Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri.

نویسندگان

  • Géraldine Sarret
  • Pierre Saumitou-Laprade
  • Valérie Bert
  • Olivier Proux
  • Jean-Louis Hazemann
  • Agnès Traverse
  • Matthew A Marcus
  • Alain Manceau
چکیده

The chemical forms of zinc (Zn) in the Zn-tolerant and hyperaccumulator Arabidopsis halleri and in the non-tolerant and nonaccumulator Arabidopsis lyrata subsp. petraea were determined at the molecular level by combining chemical analyses, extended x-ray absorption spectroscopy (EXAFS), synchrotron-based x-ray microfluorescence, and muEXAFS. Plants were grown in hydroponics with various Zn concentrations, and A. halleri specimens growing naturally in a contaminated site were also collected. Zn speciation in A. halleri was independent of the origin of the plants (contaminated or non-contaminated) and Zn exposure. In aerial parts, Zn was predominantly octahedrally coordinated and complexed to malate. A secondary organic species was identified in the bases of the trichomes, which contained elevated Zn concentrations, and in which Zn was tetrahedrally coordinated and complexed to carboxyl and/or hydroxyl functional groups. This species was detected thanks to the good resolution and sensitivity of synchrotron-based x-ray microfluorescence and muEXAFS. In the roots of A. halleri grown in hydroponics, Zn phosphate was the only species detected, and is believed to result from chemical precipitation on the root surface. In the roots of A. halleri grown on the contaminated soil, Zn was distributed in Zn malate, Zn citrate, and Zn phosphate. Zn phosphate was present in both the roots and aerial part of A. lyrata subsp. petraea. This study illustrates the complementarity of bulk and spatially resolved techniques, allowing the identification of: (a) the predominant chemical forms of the metal, and (b) the minor forms present in particular cells, both types of information being essential for a better understanding of the bioaccumulation processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability.

Hyperaccumulators tolerate and accumulate extraordinarily high concentrations of heavy metals. Content of the metal chelator nicotianamine (NA) in the root of zinc hyperaccumulator Arabidopsis halleri is elevated compared with nonhyperaccumulators, a trait that is considered to be one of the markers of a hyperaccumulator. Using metabolite-profiling analysis of root secretions, we found that exc...

متن کامل

Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri.

Arabidopsis halleri is a Cd hyperaccumulator; however, the mechanisms involved in the root to shoot translocation of Cd are not well understood. In this study, we characterized Cd transfer from the root medium to xylem in this species. Arabidopsis halleri accumulated 1,500 mg kg(-1) Cd in the shoot without growth inhibition. A time-course experiment showed that the release of Cd into the xylem ...

متن کامل

Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe

Zinc (Zn) is an essential plant micronutrient but is toxic in excess. To cope with excess Zn, plant species possess a strict metal homeostasis mechanism. The Zn hyperaccumulator Arabidopsis halleri has developed various adaptive mechanisms involving uptake, chelation, translocation and sequestration of Zn. In this mini review, we broadly discuss the different Zn tolerance mechanisms and then fo...

متن کامل

Metal accumulation in tobacco expressing Arabidopsis halleri metal hyperaccumulation gene depends on external supply

Engineering enhanced transport of zinc to the aerial parts of plants is a major goal in bio-fortification. In Arabidopsis halleri, high constitutive expression of the AhHMA4 gene encoding a metal pump of the P(1B)-ATPase family is necessary for both Zn hyperaccumulation and the full extent of Zn and Cd hypertolerance that are characteristic of this species. In this study, an AhHMA4 cDNA was int...

متن کامل

Conserved but Attenuated Parental Gene Expression in Allopolyploids: Constitutive Zinc Hyperaccumulation in the Allotetraploid Arabidopsis kamchatica

Allopolyploidization combines parental genomes and often confers broader species distribution. However, little is known about parentally transmitted gene expression underlying quantitative traits following allopolyploidization because of the complexity of polyploid genomes. The allopolyploid species Arabidopsis kamchatica is a natural hybrid of the zinc hyperaccumulator Arabidopsis halleri and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 130 4  شماره 

صفحات  -

تاریخ انتشار 2002